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A B S T R A C T  

Assuming that there exists in the unit interval [0, 1] a coanalytic set of 
continuum cardinality without any perfect subset, we show the existence 
of a scattered compact Hausdorffspace K with the following properties: (i) 

For each continuous map f on a Baire space B into (C(K), pointwise), the 
set of points of continuity of the map f: B -* (C(K), norm) is a dense G~ 
subset of B, and (it) C(K) does not admit a Kade~: norm that is equivalent 
to the supremum norm. This answers the question of Deville, Godefroy 
and Haydon under the set theoretic assumption stated above. 

1. Introduction 

All  topologica l  spaces,  except  those  in the  Append ix ,  a re  Hausdorf f  in this  note .  

For  a compac t  space  K, C(K)  denotes  the  Banach  space of all r ea l -va lued  cont in-  

uous  funct ions  on  K wi th  the  s u p r e m u m  norm.  Besides the  usua l  n o r m  a n d  weak 

topologies  on C(K) ,  we also consider  the  topology  7-p of the  poin twise  conver- 

gence on K .  Af te r  Dubs [Dub], we say tha t  a compac t  space K has  the  p r o p e r t y  

(.At*) if, for each cont inuous  m a p  f f rom a Baire  space B into (C(K) ,  rp), the  set 

of  al l  po in t s  of  con t inu i ty  of  the  m a p  f :  B ---+ ( C ( K ) ,  no rm)  is a dense  G~-subset  

of B.  In his Pa r i s  thesis [Dev 1], Deville has  shown tha t  Eber le in  compac t  spaces 
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have property (.Af*), and this result has been generalized by Debs [Deb] to Corson 

compact spaces. 

Recently, Deville and Godefroy [DG] have obtained a further generalization by 

suitable renorming of function spaces. We say that the norm ]l " ]] of a Banach 

space X is a Kade~  n o r m  if, on the unit sphere {x E X: ]ix]] = 1}, the norm 

topology coincides with the weak topology. In case X = C(K),  (Kcompact) a 

norm I1" II, whi& is equivalent to the supremum norm, is a rp-Kade~: n o r m  if 

the norm topology (= the topology of uniform covergence) and rp coincide on 

the I1" ]l -unit sphere. Deville and Godefroy observed that an equivalent locally 

uniformly convex norm, which is rp lower semicontinuous, is a ~-p-Kade~ norm 

and that, if C(K) admits an equivalent rp lower semicontinuous rp-Kade~ norm, 

then K has the property (Af*). They have shown further that such renorming 

is indeed possible for a class of compact spaces K strictly larger than the class 

of Corson compact spaces. One of the problems posed by them (Problem 1) 

is the following: Does there exist a compact space K with the property (Af*) 

such that no equivalent norm on C(K) is locally uniformly convex and rp lower 

semicontinuous? 

For scattered compact spaces K,  Deville [Dev 2] has shown that if K (~1) = 0 

then K has property (Af*), and a recent paper by Haydon and Rogers [HR] proves 

that the same condition implies the existence of an equivalent locally uniformly 

convex norm. We remark here that for a scattered compact space K,  the weak 

topology and rp coincide on bounded subsets of C(K). Hence each equivalent 

norm on C(K) is rp lower semicontinuous and each equivalent Kade6 norm is 

a ~-p-Kade~ norm. In [HI, Haydon has constructed a compact scattered space 

K such that K ('~1) is a singleton (hence K ('1+~) = @), K fails property (Af*) 

and C(K) has no equivalent strictly convex norm nor equivalent smooth norm. 

Pondering on this state of affairs, Haydon reiterates the question of Deville and 

Godefroy specifically for compact scattered spaces. 

In [JNR 2], it is shown that if g is a compact space such that (C(K), rp) 
is vr-fragmentable (for definition, see Section 3), then K has property (Af*). If 

c( g)  has a r v lower semicontinuous and rp-Kade~ renorming, then (c( g), rp) 
is a-fragmentable [JNR 2]. It was even conjectured by one of us that, if K has 

property (.Af*), then (C(K),  rp) is a-fragmentable. 

In this note we show that the above conjecture is false and the answer to the 

question of Deville and Godefroy and Haydon is affirmative provided we assume 
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the following statement (independent of ZFC axioms): 

( .)  There exists a coanalytic set in the unit interval [0, 1] of continuum cardi- 

nality without any perfect subset. 

Statement (*) implies the continuum hypothesis CH (use [J; Theorem 94, p.507 

and Corollary 3, p.519]) and it is satisfied in GSdel's universe (Y = L) [J; Corol- 

lary 2, p.529 and Theorem 3.4, p.ll0]. 

Our main result is the following. 

1.1 THEOREM: Assume (*). Then there exists a compact scattered space K with 

property (Af*) such that C( K) has no Kade~ norm equivalent to the supremum 

norm. Fhrthermore (C(K), rp) is not a-fragmentable. 

More specifically, the compact scattered space K of Theorem 1.1 is obtained 

from a theorem of Kunen (recorded in Section 3) applied to a set with property 

(*). The fact that C(K) does not admit any equivalent Kade6 norm (provided K 

is uncountable) follows immediately from Kunen's theorem and does not require 

property (*). The bulk of the proof of Theorem 1.1 is in showing that K has 

property (Af*). In Section 2, we prove a theorem on scattered spaces which 

may be of independent interest: in order to prove property (Af*) of a scattered 

compact space K, one only needs to look at maps from Baire spaces to the space 

of {0, 1}-valued continuous functions on K, i.e. the space of all open and closed 

subsets of K. In Sections 4 and 5 some auxiliary lemmas are established, and 

finally, in Section 6, the proof of Theorem 1.1 is completed by showing that 

property (Af*) holds for the one-point compactification of a set with property (*) 

endowed with the Kunen topology. 

However, we also show, in Section 7, that, under a different set theoretic as- 

sumption, viz. the existence of a precipitous ideal in wl (for definitions, see Section 

7), the same procedure applied to an arbitrary uncountable subset of [0, 1] yields 

a compact scattered space without property (AZ*). In Section 8, we collect fur- 

ther comments on the subject of the present note. In the Appendix, we compare 

our definition of property (A/'*) to other possible definitions some of which have 

appeared in literature. In turns out that they are all equivalent. In particular, 

one can limit Baire spaces to completely regular ones. 

This paper was written while the second author was visiting the University 

of Washington; he would like to express his gratitude to the Department of 

Mathematics for its hospitality. 
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2. R e d u c t i o n  to  Z e r o - O n e  F u n c t i o n s  

In this section we show that  property (A/'*) for compact scattered spaces K can 

be reduced to a property concerning the space of all {0, 1}-valued continuous 

functions on K.  We say that a compact space K fails p r o p e r t y  (A/'*) w i t h  

r e s p e c t  to  a Ba i r e  space  B if there exists a continuous map u: B ~ (C(K) ,  rp) 

such that  the set (necessarily a G,-set) of all points of continuity of the map 

u: B ~ (C(K) ,  norm) is not dense in B. Since B is Baire, this condition is 

equivalent to the existence of an e > 0 and a non-empty open subset U of B such 

that diam u(V)  > e for each non-empty open subset V of U. 

2.1 LEMMA: Let K be a compact scattered space. I l K  fails property (Af* ) with 

respect to a Baire space B,  then there exists a non-empty open subset E of  B 

and a continuous map v: E -~ (C(K) ,  rp) such that v (b) (g)  C {0, 1) for each 

b E E and v is not constant on each non-empty open subset of E.  

Proof: As seen above, the hypothesis implies the existence of a continuous map 

u: B ~ ( c ( g ) ,  ~-p) and a non-empty open subset V of B such that diam u (Y )  > 

for each non-empty open subset V of U. Since U is Baire, by shrinking U if 

necessary, we may assume that u(U) is bounded, i.e. for some c > 0, u(b)(K) C 

( - c ,  c) for each b E U. Let J = ( - c ,  c). 

Let F be the countable collection of all finite sets F of rational numbers in J 

such that the distance of each point of J to F is less than e/2. For each F E Y 

and n E N, the set 

An(F)  = {b E B: dist(u(b)(g) ,  F)  > l / n }  

is closed. Furthermore the countable family 

{An(F): r E ~" and n E N} 

covers B. For, if b E B, then since u(b)(K) is scattered it is a countable compact 

subset of J .  Hence there is an F E Y with u(b)(K) n F = 0. It follows that 

b E An(F)  for some n E N. Since U is a Baire space, there is a non-empty open 

set G such that G C An(F)MU for some F E ~" and n E N. Let F = {q l , - . . ,  q,n} 

where 

- c  = qo < ql < " "  < qm < qm+l = C, 

and let ~: J \ F  ~ F* = F U {c} be the continuous map given by ~(x) = qi 

whenever x E (qi-1, q~), i = 1 , . . . ,  m + 1. Then b ~-* ~ o u(b) defines a continuous 
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function w: G ---* (C(K) ,  rp). Notice that if a, b • G and w(a) = w(b), then for 

each z • K ,  u(a)(x)  and u(b)(x) are both in (qi-1, qi) for some i, i = 1 , . . . ,  m + 1, 

and therefore I(a)(x) - u(b)(x)l < e. It follows that Ilu(a) - u(b)[ I < ~ whenever 

w(a) = w(b), and consequently w is not constant on each non-empty open subset 

V of G since diam u(V)  > e. 

To conclude the proof, place the discrete space F* in {0,1} k for some k • N, 

and let pi: {0, 1} k ~ {0, 1} be the i-th projection. If we denote by vi the map 

b ~ pi o w(b) for b • G, then there is at least one i for which there exists a 

non-empty open subset E of G with the property that vi is not constant on 

each non-empty open subset of E.  For, otherwise, there would be a decreasing 

sequence G1 D G2 D . ' -  D Gk of non-empty open subsets of G such that vi is 

constant on Gi for each i, and consequently w would be constant on Gk. This 

concludes the proof. | 

From Lemma 2.1, we immediately obtain the following characterization of 

property (A/'*) for scattered compact spaces. We denote by C(K , (0 ,1 } )  the 

space of all {0, 1}-valued continuous functions on K.  

2.2 THEOREM*: A compact scattered space K has property (A/'*) i f  and only 

i f  each continuous map of a Baire space B into (C(K,  {0, 1}), rp) is constant on 

some non-empty open subset of B. 

2.3 Remark: Let K be as in Lemma 2.1, and fix an arbitrary point p in K. 

Then we can make the map v in Lemma 2.1 satisfy an additional condition: 

v(b)(p) = 0 for each b • E.  Indeed, one of the sets {b • E: v(b)(p) = d}, d = 0, 1, 

has non-empty interior. | 

3.  A T h e o r e m  o f  K u n e n  

Our example of Theorem 1.1 is based on the following theorem due to K.  Kunen; 

a proof can be found in [Ne]. 

3.1 THEOREM: Assume C H  and let X C [0,1]. Then there exists a 1ocM1y com- 

pact, locally countable topology T on X,  stronger than the Euclidean topology, 

such that, i f  K is the one-point compactit~cation of (X, T) ,  then the function 

space C( K )  is hereditarily Lindelbf in the weak topology. 

* After the present note was submitted, we learned that R. Haydon had also proved 
this theorem in his Choquet Seminar talk, December 1989. 
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Let (X, 7") be a space as in Theorem 3.1. Then the local countability implies 

that (X, T)  is scattered and therefore its one-point compactification K is also 

scattered. If the Banach space O(K) admits an equivalent Kade6 norm Ill" Ill, 

then the Itl" IH -unit sphere is norm separable since it is weakly (and hence norm) 

LindelSf. Thus C(K) is separable or equivalently K is metrizable. Since K is 

also scattered K is countable. Therefore if X in Theorem 3.1 is uncountable, 

then C(K)  has no Kade6 norm that is equivalent to the supremum norm. 

One can state a slightly stronger conclusion than above using the notion of 

cr-fragmentability introduced in [JNR 1]. A topological space (T, r)  is said to 

be a - f r a g m e n t e d  by a metric p on T, if for each ~ > 0, T can be written as 

T = U{T,: n E N} where each T, has the property: each non-empty subset of 

T,  contains a non-empty relatively r-open subset of p-diameter less than ~. We 

shall simply say that a Banach space E is a - f r agmen tab l e  if E with the weak 

topology is a-fragmented by the norm metric. It is known that, if E admits an 

equivalent Kade6 norm, or more generally, if E as a subset of E** is obtained from 

a family of weak* Borel subsets of E** by the Souslin operation (i.e. operation 

A), then E is a-fragmentable [JNR 1]. 

3.2 LEMMA: It 'a Banach space E is a-fragmentabIe and hereditarily LindelSf in 

its weak topology, then E is separable. 

Proof: Assume that E is not separable. Then for some e > 0 there exists 

an uncountable subset D of E such that I[x - y[[ _> e whenever x, y E D and 

x ¢ y. Since E is (r-fragmentable, D = U{D,:  n E N}, where, for each n, each 

non-empty subset of Dn contains a relatively weak open subset of diameter less 

than e, i.e. each non-empty subset of D ,  contains a weakly isolated point. Since 

D is uncountable, D ,  is uncountable for some n. Let A be the set of points 

of condensation of D ,  in E. Then since E is hereditarily LindelSf in the weak 

topology, D , \ A  is countable and therefore D ,  N A is non-empty with no weakly 

isolated point. This contradiction proves the lemma. | 

Taking into account the remark directly after Theorem 3.1, we have the fol- 

lowing corollary. 

3.3 COROLLARY: In Theorem 3.1, if  X is uncountable, then the Banach space 

C( K) is not (r-fragmentable. 
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4. A L e m m a  on Famil ies  of  Coun tab l e  C o m p a c t a  

We shall denote by C(I) the space of compact countable subsets of the unit 

interval I with the topology induced by the Hausdorff metric (cf. [Ku; §42]). 

Recall that a standard countable base for C(I) consists of subsets of C(I) of the 

form 

(J1,---,  J . )  = {L • C(I): L C J~ U . . .  U Jn and L O Ji ¢ 0 for i = 1 , . . . ,  n} 

where Ji, i = 1 , . . . ,  n, are open intervals with rational end points. 

4.1 LEMMA: Let S be a Baire space and let N: S ~ C(I) be a continuous map 

such that N(s) \N(t )  is compact for a11 s, t • S and, for each non-empty open 

subset V of S, 

(1) N(V) = U{N(s) :  s • V} is uncountable. 

Then there exist a dense G6-subset T ors  and a continuous map f: T --~ I, that 

is not constant on each non-empty open subset of T, such that f(t) • N(t) /'or 

each t • T. 

Proo£" For each non-empty open set V in S, let D(V) denote the set of a l l  

condensation points of N(Y)  in I (see(l)), and for s • S, let 

D(s) = N{D(V):  V is a neighborhood of s}. 

By (1), D(V) ~ • for each open subset V of S, and 

{D(V): V is an open neighborhood of s} 

is a downward filtered family of compact sets in I. Hence D(s) ~ 0. To see that 

D(s) C N(s), let G be a neighborhood of N(s) in I. Then by continuity of N, 

there is a neighborhood Y of s with N(V) C G whence D(s) C D(V) C G. Since 

G is arbitrary, we now have 

(2) $ ¢ D(s) C N(s) for all s E S. 

Let 

(3) f ( s )  = min D(s) for s 6 S. 
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Then the map f :  S --* I is lower semicontinuous. For, if a < f(s), then D(s) C 

(a, 1] and therefore D(V) C (a, 1] for some neighborhood V of s. It follows that 

f(t) • D(t) C D(V) C (a, 1] for each t • V. By a standard theorem (cf. [E] 

1.7.14(b)), the set T of all points of continuity of f is a dense G,-subset of S. Of 

course, then f iT  is continuous, and f(t) • N(t) for each t • T. 

It remains to show that for each non-empty open set U in S, f takes at least 

two values on UNT. Let t • UNT. For each i • N, let 14 be the open 1/i-interval 

around f(t), and put 

= {s • s :  tv( , )  n z, c N(t)} .  

Then the set Fi is closed, because 

S\Fi = {s • S: N(s) N (Ii\N(t)) # O} 

is open by the continuity of N. Furthermore, if s E S, then, since N(s)\N(t)  is a 

compact set not containing f(t), 14 N (N(s)\N(t)) = 0 for some i, i.e. s E Fi. By 

hypothesis S = U{F~: i E N} is a Baire space. Hence there are a non-empty open 

set V in S and an i E N such that V C F, N U. Then since N(V) N I, C N(t) and 

the set N(t) is countable, each point of condensation of N(V) lies off the interval 

Ii, i.e. D(V) C 1\14. Consequently, ifs  E VNT, then f(s) E D(s) C D(V) C I \ I i  

and so f(s) # f(t) EIi .  This completes the proof, l 

5. A R e m a r k  on  Sets  w i t h  P r o p e r t y  (*) 

We shall need the following lemma, which is a slight strengthening of the well- 

known fact that sets with property (*) are meager in a very strong sense. 

5.1 LEMMA: Let X C I = [0,1] be a set with property (*). Then each continuous 

map f: T -+ X defined on a completely regular Baire space T is constant on some 

non-empty open set in T. 

Proof: We prove by contradiction. Assume that a map f :  T --* X is not constant 

on each non-empty set in T. Then, following a standard argument, we show that 

property (*) for X is violated. 

Let f :  f i t  --* I be the extension of f to the Stone-(~ech compactification fiT 

of T, and let M = f - l ( X ) .  Then since I \ X ,  being analytic, is a Souslin-.~ set 

in I ,  its preimage f lT \M under f is a Souslin-~" set in fiT. (Here and elsewhere, 

we use the results and terminology of [RJ].) 
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It follows that flT\M (and therefore M) has the Baire property, i.e. M = 

(U\Nl) U N2, where U is open in fiT and N1, N2 are first category sets in fiT. 
Furthermore, since T is a Baire space and T C M C fiT, M is dense in f i t  
and is a Baire space. It is easy to verify that N2 is of first category in M, and 

therefore U\N1 is dense in M and also in fiT. Consequently U\N1 contains a 

dense G6-subset G of fiT, and f is not constant on each non-empty open set in 

G because T n G is dense in T. 

We may now shift our attention to G, and for simplicity, the map f :  f i t  .-~ X 
will be denoted by f .  Let {Gn: n E N} be a sequence of open sets in f i t  such 

that G = N{Gn: n E N}. Let D be the set of all finite sequences of O's and l 's. 

By induction on the length of members of D, we choose a family {Ha: d E D} of 

open sets in f i t  such that 

(i) Ha0 O Hal C Hd for each d E D; 

(ii) f(Hdo) O f(Hal) = • for each d E D; 

(iii) If the length of d is n, then Hd C Gn. 
To get the induction started, we let H 0 = Go = fiT, where 0 denotes the empty 

sequence of length 0. Suppose we have already chosen Ha for all d E D of length 

_< n. Fix a d E D of length n. Then there are two points m0 and ml in Hd N G 

so that f(mo) # f(ml). Then we can choose open neighborhoods Hdi of mi 
(i = 0,1) so that (i) and (ii) as well as Hdi C Gn+l (i = 0,1) are satisfied. Now 

for each n E N, let 

Zn = U { H a :  d E D with length n} C G,, 

and let 

z = N} c N{G,,: N} : a  c M. 

Clearly Z is compact and hence f(Z) is a compact subset of X. To see that the 

cardinality of f(Z) is continuum, it is sufficient to observe that if u, v 6 {0, 1} N 

and u # v, then by (ii), 

f(( '~{Htdn: n e IN}) n f (N{Hvl , , :  n E N}) = O. 

(Here if u = (il,i2,...) then uIn = ( i l , - - - , i n ) . )  This contradicts property (*), 

and the proof is complete. | 
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6. P r o o f  o f  T h e o r e m  1.1 

Before we proceed to the proof of Theorem 1.1, we need one more lemma. 

6.1 LEMMA: he,/[ is a family of compact open subsets of a topological space such 

that U A is countable, then .4 is countable. 

Proof." Suppose that .4 is uncountable. Since U .4 is countable, there is a count- 

able subfamily .4o of .4 such that U.40 = U .4. Then each member A of .4 is 

covered by a finite subfamily of .40. Therefore there exist an uncountable sub- 

family B of .4 and a finite sequence {Ai: i = 1 , . . . , n }  in .40 such that each 

member of B is contained in L = U{Ai: i = 1 , . . . ,  n}. Being compact and count- 

able, L is a compact metrizable space and hence C(L) is separable. However, 

{XB: B E B} is an uncountable subset of C(L) with the distance between any 

distinct members at least one. This contradiction proves the lemma. II 

Proof of Theorem 1.1: Let X be a subset of the unit interval I with property 

(*), and let K be the one point compactification, with p~o the point at infinity, 

of the space (X, 7-) with Kunen's topology as described in Theorem 3.1. Recall 

that the space K is scattered and C(K) has no Kade5 norm equivalent to the 

supremum norm. In fact, C(K) is not even a-fragmentable (Corollary 3.3). It 

remains to verify property (.N'*) for K.  

Suppose that K does not have property (Af*). Then as explained in Section 1 

(and proved in the Appendix), K fails (A/'*) with respect to a completely regular 

Baire space B (cf. Section 2). By Lemma 2.1 and Remark 2.3, there exist a 

non-empty open set E in B and a continuous map v: E --~ (C(K), Tp) such that, 

for each t E E, v(t)(K) C {0, 1}, v(t)(poo) = 0 and v is not constant on each 

non-empty open set in E. For each t E E,  let 

N(t) = {x E K: v(t)(x) = 1} C X C Z. 

Then N(t) is a compact open subset of (X, 7"), and it is countable because the 

topology 7" is locally countable. Furthermore, if t ,s  E E, then N(s) \N( t )  is 

7.-compact, and, since 7" is stronger than the usual Euclidean topology of X, 

both N(t) and N(s) \N( t )  are compact subsets of I in the usual topology, i.e. 

N(t),  N(s ) \N( t )  E C(I) for all s, t E E (cf. Section 4). 

Now for each point x E I ,  the set {t E E: x E N(t)} is open by the continuity 

o fv .  Hence for each subset A o f I ,  {t E E: N(t) lqA ~ @} is open and {t E 

E: N(t) C A} closed in E. Therefore the map t H N(t) is Borel-measurable 
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where C(I) is given the topology of the Hausdorff metric (see Section 4). Since 

E, being open in a Baire space B, is Baire, there exists a dense G~-subset S 

of E such that  the restriction of N to S is continuous [Ku; §32 II]. Let V be a 

non-empty open subset of E, then v(V (1 S) is uncountable. For, if v(V M S) were 

countable, then, since S is a Baire space, there is a non-empty open subset W of 

E such that v is constant on W N S and hence on W by the continuity of v. This 

contradicts our choice of E and v. Hence v(V N S) is uncountable, and since, 

for each s e V 13 S, N(s) is a compact open subset of (X, T), we conclude from 

Lemma 6.1 that N(V 13 S) = U{Y(s): s • V N S} is uncountable. 

We may now apply Lemma 4.1 to our map N: 5' ~ C(I) to obtain a dense G6 

subset T of S and a continuous map f :  T ~ X C I which is not constant on 

each non-empty open subset of T. This contradicts the conclusion of Lemma 5.1 

since X has property (*), and the proof is complete. I 

7. Precipitous Ideals and the Kunen Construction 

In this section we show that under a set theoretic hypothesis different from (*), 

the compact space K obtained by applying Theorem 3.1 (the Kunen construction) 

to an uncountable subset X of [0, 1] fails the property (Af*). This is directly 

opposite to the conclusion we reached in the last section under (*). 

Let S be a set. A family 2" of subsets of S is called an ideal  if A, B E 2" 

implies C E 27 for each C C A U B. The ideal 2: is called a a- ideal  if 2" is closed 

under countable unions, and 2" is called non-pr inc ipa l  if it contains all finite 

subsets of S. We denote by 2 -+ the family of all subsets A of S not belonging to 2-. 

(Informally the members of 2" are "small" and the members of 2-+ are "large"). To 

an ideal iT, one can associate a two-person game G(2") (due to Galvin; see [BTW]). 

The players "Void" and "Non-void" alternatively pick sets A1, A2, . . .  in 2-+ such 

that Ai D Ai+1 for all i. "Void" wins the game if N{Ai: i E N} = 0; otherwise 

"Non-void" wins. A non-principal ideal 2- is called p rec ip i tous  if "Void" does 

not possess a winning strategy for the game G(2-). It is easy to check that  each 

precipitous ideal is a a-ideal. 

An ideal 2" of subsets of a topological space T is said to be local if, for a subset 

A of T, A E 2" provided that A is locally in 2-, i.e. for each t E A there is a 

neighborhood U of t such that A N U E 2". 

7.1 LEMMA: Let T be a topological space. H there is a precipitous ideal 2- of 

subsets of T, which is local, then there exist a BaJre space B and a continuous 
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map f: B --~ T which is not constant on each non-empty open set in T. 

Proof" The proof follows the idea of Krom and Frankiewicz-Kunen [Kr] [FK]. 

Given A C T, let V = U{w:  w open in T and W N A • 27}. Then A* = A \ V  is 

the largest relatively closed subset of A such that 

(1) U N A* • Z + whenever U is open and U N A* # 0 

If A* = 0, then A is locally in 27 and so by hypothesis A • Z. The converse is 

clear. We note that (A*)* = A* and A* C B* whenever A C B. Let M be the 

collection of all sequences 7 = (El ,E2, . . . )  in Z + such that 

(2) Ei D Ei+l for all i • N and Ei = E* for infinitely many i's. 

As in Krom [Kr], we give M the metrizable topology induced by the product 

topology of (Z+) N, where 2 -+ is given the discrete topology. The standard base 

for this topology consists of all the sets of the form 

N ( E , , . . . , E , )  = {7 • M: 7 extends ( E 1 , . . . , E , ) } ,  

where E1 D E2 D . . .  D E ,  and Ei 6 27+ for i = 1 , . . . ,  n. Let B be the subspace 

of the product T x M defined by 

B = {(x,7): 7 = (E, ,E2, . . . )  6 M and x 6 f i  Ei} 
i=1 

and let f :  N ~ T be the restriction of the projection: T x M --* T. Then we 

show that 

(a) B is a Baire space, and 

(b) f is not constant on each non-empty open set in B. 

First we observe that, for each open set V in T and a finite decreasing sequence 

( E l , . . . ,  E,) in Z +, 

(3) B N (V x N(E1 , . . . ,  E,))  # 0 if and only if V N E ,  6 Z +. 

Indeed, if (x,7) fi B N (V x N(E1 , . . .  ,En)), then (by (2)), for some k > n, the 

k-th term Ek of 7 satisfies x 6 V M E~ = V N Ek C V N En. Since V f3 E~ 6 27 + 

by (I), V N E, 6 27+. Conversely suppose V MEn 6 27+ and let A = (V MEn)*. 
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Then 7 = (E~,..., En, A, A,...) • M and if z • A C V, then (x, 7) • B M (V × 

N(E1,.. . ,  E,)). 
In order to show (a), assume that {Gi: i • N} is a sequence of dense open 

subsets of B, V an open set in T and that (E1,...,En) is a finite decreasing 

sequence in Z + such that B N (V × N(EI , . . . ,E , ) )  # 0 or V MEn • 27+. We 

must show that (Y x g(E1,. . .  ,E,))NN{Gi: i • N} # 0. Consider the following 

strategy of "Void" for the game G(27). "Void" begins by A0 = (VME,)*. Suppose 

"Non-void" plays A~ • 27+ with A1 C A0. Then B M (V x N(E1,.. . ,  E,,, A~)) # 0 

by (3). Since G1 is dense and open in B, one may choose an open set V1 C V 

and a decreasing finite sequence (A~, . . . ,  A~ ~) in Z + such that A1 D A 1 and 

O # B M (V1 x N(E1, . . . ,E , ,A, ,A~, . . . ,A'~' ) )  C G1 

After this preliminary consideration "Void" plays A2 = (V1 N A~' )*. Then the 

entire process is repeated. In general, suppose that "Non-void" plays A2i+l • 27+ 

so that A2i+l C A2i (Vi N "' * = A2i) . Then by (3), 

rli B N (l~ x N(E, , . . .  ,E,,A1,A~,.. .  ,A2i, A2i+,)) # 0 

and since Gi+l is dense and open in B, there are an open set Vi+l and a finite 

decreasing sequence 1 am+l  27+ 1 (A2i+2, ' " ,  " ' 2 i + 2  ) in such that A2i+l D A2i+2 and 

(4) 0 # B M (V/+I x N(E1,. . . ,En,A1,. . .  ,A2i+l,A2i+2,... , " 2 i + 2  11 C Gi+l. 

"Void" then plays A2i+2 = (Vi+l 91 am+l  ~. Since this strategy of "Void" cannot " ' 2 i + 2  / " 

be a winning one, there is a sequence {A2i+l } of moves by "Non-void" that fails 

the scheme of "Void", i.e. O{A21+I: i E N} # 0. If x E N{A2i+I: i E N} 

and 7 (E I , . . .  E,,A1, . . . ,A'~ A2i+l, a : , , A2i+2,...), then z E N{V~: i E N} and 

(x,7) • B. Consequently, by (4), (x,7) • (Y x g ( z , , . . .  , E , ) ) N  N{G,: i • N}, 

and (a) is proved. 

To see (b), let U = B N (V x N(E1,... ,En)) ¢ 0 be an open set in B as in 

(3). Since Y M Z,, • Z +, V M E* ~ 0 or equivalently Y N E* • Z + (by(l)). Since 

27 is non-principal, there are two distinct points tl and t2 in V M E*. Let V1 

and V2 be open neighborhoods of tl and t2 respectively such that V1 N V2 ~ 0 

and Vj C V (j = 1,2). Then for each j ,  VjME* • 27+ (by(l)), and hence 

0 ~ Ui = B N ( I ~  x N(E1,... ,En)) C V. Since f(Uj)  C ~ ,  f is not constant on 

U. I 
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For the rest of this section we make the following assumption: 

(**) There is a precipitous ideal of subset of wl. 

The statement (**) is equieonsistent with the existence of a measurable cardinal 

(see [J; Theorem 86, p. 4471). 

7.2 THEOREM: Assume (**). I l K  is a compact space with property (Af*), then 

each subset of C( K) that is hereditarily Lindel6f in rp (the pointwise topology) 

is norm-separable. 

Proof." Let H be a subset of C(K) which is hereditarily LindelSf in Tp. If H 

is not norm-separable, then there exists an e > 0 and an uncountable subset 

T C H such that lit - t'[[ 3> ~ whenever t,t' E ~i" and t ~ t'. We may assume 

that IT[ = IT1 [. Then by (**), there is a precipitous ideal Z of subsets of T. If 

A C T and A is locally in Z, relative to rp, then by hypothesis A is covered by a 

countable subfamily of {V: V is 7-p-open and V n A E Z}. Since, as remarked, Z 

is a a-ideal, A E Z. 

It follows from Lemma 7.1 that there is a Baire space B and a continuous map 

f :  B ~ (T, rp) which is not constant on each non-empty open set in B. Since K 

has property (A/'*), f :  B ~ (T, norm) is continuous at some b E B. Therefore, 

there is an open neighborhood U of b with diana f(U) < e. By the choice of the 

set T, f(U) is a singleton. This contradiction proves the theorem. | 

7.3 COROLLARY: Assume (**). In Theorem 3.1, if X C [0, 1] is uncountable, 

then K fails property (A/'*). 

Proof." By Theorem 3.1, (C(K),  rp) is hereditarily Lindelhf. Hence, if K has 

property (A/'*), then C(K) is norm-separable by Theorem 7.2, which implies 

that K is metrizable and therefore countable. | 

8. C o m m e n t s  

In the proof of Theorem 1.1 in Section 6, property (*) enters only through Lemma 

5.1. If there is a subset X of [0, 1] for which the conclusion of Lemma 5.1 holds 

for certain Baire spaces, then the corresponding space K obtained by applying 

Theorem 3.1 (using only CH) should have property (A;*) with respect to some 

class of Baire spaces. We illustrate this principle with two examples. 
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Example 1: Let us identify the set P of all irrational numbers in [0,1] with N N. 

We define a partial ordering -< in P as follows: a -< /~ if a(n) < ~/(n) for all 

but a finite number of n E l~I (see e.g. [Ku; §40 III]). Let X be a subset of P 

well-ordered by -< and of order type wl. If T is a space (necessarily Baire) such 

that  T × T is a Baire space, then each continuous map f :  T --~ X is constant on 

some non-empty open subset of T. To see this, assume the contrary. Then 

c - -  N U { ( ' , * )  e r × r : / ( s ) (n  + k) < s(,)(n + k)} 
n k 

is dense in T x T. For, let U and V be non-empty open subsets of T and s E U. 

Then since {x E X: x _ f(s)} is countable and since f - l ( z )  is nowhere dense by 

the assumption, 

V\{r e T: f(r) ~ f ( s ) }  = V M { t  E T: f(s) ~ f ( t ) }  5 9 .  

If t is in this intersection, then (s, t) E (U x V) N G. This shows that G, which 

clearly is a G~-set, is dense in T x T. The same is true of G -1 = {(s, t): (t, s) E G}. 

Since T x T is a Baire space, V N G -1 # 0. But if (s,t) E G N G -~, then f(s) 
and f(t) are incomparable by -<. This contradiction proves the claim. I 

Let K be the compact scattered space obtained from the set X above by 

applying Theorem 3.1. Then K has property (A/'*) with respect to spaces B with 

B x B Baire. The proof is just a repetition of the proof of Theorem 1.1. It is 

sufficient to note that, if E is an open set in B and T a dense G~-subset of E, 

then T x T is a Baire space provided B x B is Baire. 

Example 2: Let C be a coanalytic set in [0,1] which is not analytic, and let 

{Ca: a < Wl} be the constituents of the set C [Ku; §39 VIII]. Since C is not 

analytic {o~: Ca # 9} is a cofinal subset ofwl [Ku; §39 VIII Corollary ha]. Let X 

be a set composed of one point from each non-empty Ca. Then for each analytic 

subset A of C, ANX is countable by the covering theorem [Ku; §39 VIII Theorem 

5]. We show that each continuous map f :  T --* X defined on a completely regular 

Baire space with the countable chain condition (CCC) is constant on some non- 

empty open subset of T. To prove this, we proceed as in the proof of Lemma 

5.1. Let ] :  ~T ~ [0,1] be the extension of f and let M = f - l ( c ) .  Then as 

before, M contains a set G which is dense G6 in ~T. Since/~T has the CCC, each 

dense open set in ~T contains a dense open a-compact set. (Consider a maximal 
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disjoint family of cozero sets in the open set.) Hence G contains a dense G6-set 

H of the form 

711 n 

where Kin,, is compact for all m, n E N. It follows that f ( H )  is an analytic subset 

of C and therefore f ( H  n T) c f (H)N  X is countable by the property of X. Since 

H N T, which is dense and G6 in T, is a Baire space, for some x E f ( I t  N T), 

f-l(x) has non-empty interior relative to H n T and hence relative to T. | 

Now apply Theorem 3.1 to the set X C [0,1] of this example. Then the 

resulting compact scattered space K has property (At*) with respect to Baire 

spaces with CCC. As in Example 1, the above is established by repeating the 

proof of Theorem 1.1 while making sure that the CCC is preserved at each stage. 

This entails, for instance in Theorem A.2 (Appendix), replacing "Baire space" 

with "Baire space with the CCC". (The CCC version of Theorem A.2 is true 

because in the proof the space E is dense in the Stone space S(B).) 

Append ix  

Throughout this Appendix, topological spaces are not necessarily Hansdorff. We 

say that At(B, K; M) holds for topological spaces B, K and M if, whenever 

f:  B × K --+ M is separately continuous, there exists a dense G6-set D in B such 

that the map f is jointly continuous at each point of D x K. It is easy to check 

that (cf. [Na]) a compact Hausdorff space K has property (At*) in the sense 

of Section 1 if and only if At(B, K; R) holds for each Hausdorff Balre space B. 

However, other authors (e.g. [B]) define property (At*) for a compact space K 

by demanding At(B, K; M) to hold for each Baire space B and each metrizable 

space M. We show here that the last condition is equivalent not only to our (At*) 

but also to a less restricted form of (At*), viz. At(E, K;R)  for each Tychonoff 

(=completely regular T1) Baire space E. 

A.1 THEOREM: Let K be a compact space and let B be a Baire space. If  

At(W, K; R) holds for each open subset W orB, then At(B, K; M) holds for each 

metrizable space M. 

Proof: Let {es: s E S} be an orthonormal system in a Hilbert space, and let 

J(s) = E [0, 1],s e S}. 
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Then the space J(S) with the norm topology of the Hilbert space is the standard 

"hedgehog space" with ISI "spines". Since each metrizable space is embedded in 

a countable product J(S) °° for a suitable S, it is sufficient to show that,  under 

the hypothesis of the theorem, A/'(B, L; J(S)) holds for an arbitrary index set S. 

Let f: B x g --* J(S) be separately continuous. As in [Na], it is enough to 

show that,  for each e, 0 < e < 1, and for each non-empty open subset U of B, 

there exists u E U such that each (u, k) • {u} x K has a neighborhood H in 

B × K such that  diam f (H) _< 3~. For each b • B, the set 

S(b) = {s • S: f({b} × K)  n {res: r > e} # ¢} 

is finite by the compactness o f K .  I f F ~  = {b • B: IS(b)[ _< n}, then B = 

U{Fn: n = 0,1, 2, . . .}. Since B is Baire and each Fn closed, there are non- 

negative integer n and a non-empty open set V in B such that V C U f] Fn\Fn-1 

(let F-1 = ~). If n = 0, then diam f (V  x K)  < x/'2e, and so we may assume 

that n > 0. Let v E V. Then using the continuity of f in the first variable, we 

see that S(v) C S(w) if w is sufficiently close to v. Hence there exists an open 

neighborhood W of v contained in Y such that S(v) C S(w) for each w • W, 

but then S(v) = S(w) since IS(v)[ = [S(w)[ = n for w • W. Write T = S(v). 

Let ~: J(S) ---* J(S) be a continuous map given by 

go(res)= m a x { r - e ,  0}es f o r r e [ 0 , 1 ] a n d s • S .  

Then go o f ( W  × K) C J(T). By our assumption A/'(W, K;  N) holds and therefore 

A/'(W, K;  N °°) holds. Now J(T) is contained in a finite dimensional subspace of 

the Hilbert space, and hence .A/'(W, K; J(T)) holds. Consequently there exists a 

u E W C U such that go o f is jointly continuous at each point of {u} x K.  Hence 

for each k E K,  there exists a neighborhood H of (u, k) in W x K (therefore, in 

B x K)  such that  diam gof(H) <_ ~. But, for each x E J(S), [Ix - go(x)l[ _< ~, and 

therefore diam f(H) _< 2e + diamgof(H) _< 3E. | 

A.2 THEOREM: Let K be a compact space. / f .Af (E ,K;R)  holds for each Ty- 

chonoff Baire space E, then Af ( B, K; M) holds for each Ba/re space B and each 

metrizable space M. 

Proof: Our proof uses a method of [PW; Section 6.6]. By Theorem A.1, it is 

sufficient to prove that N(B, K; R) holds for each Baire space B or equivalently 
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that, whenever f: B ~ (C(K), rp) is a continuous map, the set of all points of 

continuity of f: B --* (C(K), norm) is a dense G6-set in B. 

Let B be a non-empty Baire space, let/3 be the Boolean algebra of regularly 

open sets in B, and let S(B) be the Stone-space of B (cf. [Ko]). Recall that S(B) 
is the space of all ultrafilters 9 r in/3 with a compact Hansdorff topology. For 

each V • /3 ,  let 

S(V) = {Jr • S(/3): V • ~=}. 

Then {S(V): V • B} is a base for the topology consisting of compact open sets, 

and V ~ S(V) is a Boolean algebra isomorphism of/3 and the family of all 

compact open sets in S(B). 
Let 

E = {Y • S(/3): N{V: y • y} # 0}, 

and give E the induced topology. Then E is a Tychonoff space. We show that 

E is a Baire space. Let {F,: n • N} be a sequence of dense open subsets of E, 

and, for each n, let 

a.=U{veB:s(y)nEcr.}. 

Then G ,  is open and dense in B, and, since B is a Baire space, for each non- 

empty U E /3, there is an x 6 U n ["]{G,: n 6 N}. Let f"  be a ultrafilter that 

contains the filter {V 6 B: x • Y}. Then x • N{V: V • Y}. (For, otherwise, for 

some V • Y, x • B \ V  and hence B \ V  • Y.) This shows that 9 t- • E n S(U). 
Furthermore, for each n, there is a V, • 13 such that S(V,)AE c F ,  and x • V,. 

Then Y • S(V,) N E C F , .  Consequently S(U) t3 r'I{F,,: n • N} # 0 for each 

non-empty U • B, or equivalently N{F,:  n • N} is dense in E. 

Since (C(K), r,) is regular nausdorff, for each .~" • E, f (N{V: Y • Y}) is 

a singleton, say {9(Y)}. We note that qo(S(Y) n E) c f (Y)  for Y • /3, and 

hence ~: E --* (C(K), rp) is continuous using once more the regularity of rp. By 

hypothesis the set of all points of continuity of the map ~o: E -~ (C(K), norm) is 

a dense G6-set in E. Now, for e > 0, let 

G, = U { H :  H is open in B and diam f (H) <_ e}. 

The proof is complete if the open set G, is shown to be dense in B. Suppose 

not, i.e. U = B\G--, # O. Then U 6 /3 and there is a point of continuity of 
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~: E --* (C(K) ,  norm) in S(U) N E. Hence there exists a non-empty W • Y such 

that W C U and diana ~ ( S ( W )  N E)  < ~. As we have seen, for each x • W, 

there is an  .F" • S (W)  with z • N{V: V • .F'} and  so V~(.F') = f(x). It follows 

that f ( W )  C cp(S(W) (q E)  and therefore diana f ( W )  < e. This contradicts that 

W n G ,  =$. | 
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